

Consortium for Computing Sciences in Colleges Northeastern Region
2003 Undergraduate Programming Contest

Sponsored by Microsoft Corporation
Rhode Island College, Providence, RI

Friday, April 25, 2003

Guidelines and notes

1. The contest will begin after the welcoming remarks conclude (some time between 9:00am

and 9:30am) and will run continuously until 12:00noon. Breakfast will be available at about
8:00am, and lunch will be available at about 12:00noon.

2. Each team consists of up to three undergraduates currently enrolled at the same institution.

3. Each team will be randomly assigned a single computer in the computer lab of Horace Mann

Technology Center. Teams may use C, C++, or Java to write solutions to the problems.

4. The contest will consist of five problems. The team that correctly solves the most problems

wins. If more than one team correctly solves the same number of problems, placement will
be determined by the total time to complete them, i.e., the sum of the solution times for each
solved problem. For example, if the contest begins at 9:30am and a team solves one problem
at 10:00am and another problem at 11:00am, its total time is 120 minutes since it took 30
minutes for the first problem and 90 minutes for the second problem.

5. Teams may use any printed materials during the contest but may not use any electronic

devices (e.g., laptop computers, calculators, or PDAs) or any materials stored electronically.

6. Teams may print out code. Your source code should include a comment at the beginning

indicating your school/team’s name. Your printouts will be delivered to you.

7. Submitted “solutions” will be sent to the judges via email. The judges will mark them as

accepted or rejected. The judges may indicate one of the following reasons for rejection:
program not found, compilation error, run-time error, running time limit exceeded, incorrect
output, or incorrect output format. Teams may submit “solutions” to the same problem
multiple times (within reason) without penalty.

8. A public scoreboard will be maintained. To maintain competition and suspense, however, it

will not be updated during the last 45 minutes of the contest. It may be removed earlier at the
discretion of the judges.

9. Contestants may not communicate with faculty advisors or other teams during the contest.

All questions should be directed to contest officials only. For any disputes, the decision of
the judges will be final.

10. For each problem, you may assume that the input is both legal and properly formatted.

Hence, no error checking is required.

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 1

1. Magic Square

A magic square is an n x n array of integers in which the numbers in each row, each
column, and both diagonals add up to the same value. Normally, each integer is unique,
but we will ignore that requirement for this problem. Write a program named ismagic
that takes from standard input a description of a square array and outputs the word yes if
the array forms a magic square and outputs no otherwise. [Clarification: n can be as
large as 100.]

Input: Your program should accept the square array from standard input. The first

line will specify the number of rows (and columns) in the array. The
remaining lines will specify each row of the array, with integers separated by
single spaces.

Output: Your program should output yes or no, depending on whether the square

array is a magic square.

Sample runs:

$ ismagic
? 2
? 9 4
? 5 1
no

$ ismagic
? 3
? 8 1 6
? 3 5 7
? 4 9 2
yes

$ ismagic
? 3
? 8 1 6
? 3 0 7
? 4 9 2
no

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 2

2. Triangle Sum

 3
 5 8
 4 2 1
 20 7 3 4
 2 5 2 9 6

The figure above shows a triangle of numbers. Write a program named trianglesum that
calculates the maximum sum of the numbers encountered on a path from the top to the
bottom. Each path begins at the single value in the top row and ends at one of the values
in the bottom row. Each step in the path can go one row down either diagonally to the left
or diagonally to the right. For example, one path is 3 5 2 7 5, and another path is
3 8 2 3 9. You can assume that the triangle will contain at least 1 row and up to
200 rows. You can assume that each number in the triangle is an integer between 0 and
100, inclusive.

Input: Your program should accept the triangle representation from standard input.

The first line will specify the number of rows in the triangle. The remaining
lines will specify each row of the triangle, with integers separated by single
spaces.

Output: Your program should output a single number indicating the maximum sum

that can be obtained on a path from the top to the bottom of the triangle.

Sample runs:

$ trianglesum
? 2
? 1
? 10 20
21

$ trianglesum
? 5
? 3
? 5 8
? 4 2 1
? 20 7 3 4
? 2 5 2 9 6
37

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 3

3. The Bouncing Bishop

The game of chess is played on an 8 by 8 board by two
opposing players, one with black pieces and the other with
white pieces. One piece is called the bishop, and it can
move diagonally in any direction. For example, in the
board to the right, the bishop is indicated by the B, and it
can move to any of the spots marked with an x. Of course,
if another piece occupies a square, the bishop can not move
through that piece. However, the bishop could capture it if
the piece were an opposing piece.

Consider a new piece, the “bouncing bishop”. This piece
moves diagonally as the bishop, but it can also bounce off a
side once in a move. Its bounce is the reflection of the way
it came. For example, in the board to the right, the
bouncing bishop is indicated by the B, and it can move to
any one of the spots marked with an x or X. The bold
capital X’s indicate sample paths after a “bounce” has
taken place. You should write a program named bishops
that determines what pieces the bouncing bishop(s) for the
side to move can capture.

Assume that each side may have at most two [correction: due to an error in the diagram
below, we changed this to three] bouncing bishops and no regular bishops. It is possible
to represent a position in any game with eight lines of text. Each line describes one row
of the board and uses the letters B, K, N, P, Q, and R to represent a bouncing White
bishop, a White King, a White Knight, a White Pawn, a White Queen, and a White Rook,
respectively (there are no other piece types). The lower case equivalents represent Black
pieces. (The rules of chess and the way the other pieces move are not relevant to this
problem.) Numbers are used to indicate consecutive empty places. For example, the
position below

r n b q r k
p p b p p
 p n p
b p
B P P P
 P P P
P B
R N Q K N R

can be represented as:
rnbq1rk1
p1p1bpp1
1p3n1p
b3p3
B3P1PP
1PP2P2
P2B4
RN1QKN1R

 x
 x
x x
 x x
 B
 x x
x x
 x

 X x
 X x X
x x
 x x
 B
 x x X
x x X
 X x

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 4

 (The Bouncing Bishop continued)

Input: Your program should accept from standard input 8 lines of text describing a
chess position. It should accept a ninth line of text containing the letter W or
the letter B, which indicates that it is White’s turn to move or Black’s turn to
move, respectively.

Output: Your program should output on one line the letters of all the pieces that the

side to move’s bishop(s) can capture. If there are no pieces that can be
captured, the program must print the word none. The list may appear in any
order. Note that if there are two or more of any piece type that can be
captured, the letter appears once for each piece.

Sample Runs:

$ bishops
? rnbq1rk1

 ? p1p1bpp1
 ? 1p3n1p
 ? b3p3
 ? B3P1PP
 ? 1PP2P2
 ? P2B4
 ? RN1QKN1R

 ? W
 pp

$ bishops
? 1k6

 ? 6q1
 ? 1p6
 ? 8
 ? 8
 ? 4B3
 ? 7R
 ? 1K6

 ? W
 pq

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 5

4. Cellular Automata

Consider a bit string of 19 bits that evolves over a sequence of generations. The values of
the bits at any generation i are determined by the values of the bits at generation i-1 and a
set of transformations, which together are called a rule. We refer to each bit value with
xi,j, where i is the generation number and j is the position number, from 18 (leftmost) to 0
(rightmost). The value of xi,j is determined by the 3-bit string from the previous
generation created by concatenating xi-1,(j+1)mod 19, xi-1,j , and xi-1,(j-1)mod 19. Since there are 8
different 3-bit strings (111, 110, 101, …, 000), a rule consists of 8 transformations, each
of which maps a 3-bit string to either 0 or 1. A rule can be concisely specified by an 8-bit
value that simply represents the appropriate outputs for the strings 111, 110, 101, 100,
011, 010, 001, and 000, in that order. For this problem, assume that the bits in generation
1 always consist of nine 0’s followed by a 1, followed by nine more 0’s. Your job is to
write a program named generations that accepts from standard input a rule number and a
number of generations, and then outputs the state of each generation using that rule.

Rule Example: Suppose the rule is 163, which is equivalent to 10100011 in base 2.
This means that the transformations are:

3-bits in previous generation what the bit should be in new generation

111 1
110 0
101 1
100 0
011 0
010 0
001 1
000 1

The first generation is 0000000001000000000
The second generation is 1111111110011111111

(000 1,001 1,010 0, and 100 0)
The third generation is 1111111100101111111

(000 1,110 0,100 0, 001 1, 011 0)

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 6

 (Cellular Automata continued)

Input: Your program should accept from standard input two values, which we’ll call

R and G. R should be an integer between 0 and 255, inclusive, corresponding
to a rule, as described above. G should be a positive integer indicating a
number of generations.

Output: Your program should output the bit string for each generation on a new line,

from generation 1 up to and including generation G. Each bit that is on (1)
should be displayed with an X character, and each bit that is off (0) should be
displayed with a . (period) character. (Remember, the bits in generation 1
always consist of nine 0’s followed by a 1, followed by nine more 0’s.)

Sample run:

$ generations
? 30
? 8
.........X.........
........XXX........
.......XX..X.......
......XX.XXXX......
.....XX..X...X.....
....XX.XXXX.XXX....
...XX..X....X..X...
..XX.XXXX..XXXXXX..

(Here, 30 is 00011110 in binary. Thus, 100, 011, 010, 001 transform to 1, while 111, 110,
101, and 000 transform to 0.)

$ generations
? 145
? 8
.........X.........
XXXXXXXX..XXXXXXXXX
XXXXXXX.X..XXXXXXXX
XXXXXX...X..XXXXXXX
XXXXX.XX..X..XXXXXX
XXXX....X..X..XXXXX
XXX.XXX..X..X..XXXX
XX...X.X..X..X..XXX

CCSCNE 2003 Undergraduate Programming Contest April 25, 2003

Sponsored by Microsoft Corporation 7

5. Finding the Shortest Path

Write a program named bestpath that finds the shortest path (in terms of total distance
traveled) between two points, S and E, on a 2-D grid that has rectangular obstacles. The
rectangles will not overlap or touch each other in any way. The path from S to E may
include travel along the edges of the rectangles, but should never pass through any
rectangle. You will be provided the start point S, the end point E, and the points making
up each rectangle in the grid. Each point will be specified by a pair of integers
representing the x and y coordinates of that point. Each rectangle will be specified by a
list of four integers – the first two represent the x and y coordinates of the rectangle’s
upper-left corner, while the next two represent the x and y coordinates of the rectangle’s
lower-right corner. You can assume that S and E are not contained in any rectangle, and
that all coordinate values are pairs of integers, each between 0 and 1000, inclusive.

Input: Your program should read from standard input a description of the 2-D scene.

The first and second lines will specify the x and y coordinates of the start point
and end point, respectively. The third line will specify the number of
rectangles in the scene. Each subsequent line will specify a rectangle with four
integers, as described above. All integers will be separated by single spaces.

Output: A sequence of points, each on its own line, that specifies the shortest path

from the start point S to the end point E. If there isn’t a unique shortest path,
you may specify any one of the shortest paths. [Clarification: You should
print out every point along the solution path that is a corner of one of the
rectangles in the scene. You should not print out any point that is not a corner
of one of the rectangles in the scene.]

Sample run (with corresponding diagram):

$ bestpath
? 0 9
? 8 2
? 3
? 1 8 4 5
? 2 4 5 1
? 6 9 9 3
0 9
4 8
6 3
8 2

